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Abstract

A new theory for the prediction of multiaxial strength of anistropic elastoplastic materials is proposed. The

resulting failure envelope, in a multidimensional stress space, is piecewise smooth. Each facet of the envelope is
expected to represent the locus of failure data by a particular anisotropic elastic deformation mode called a Kelvin
mode. It is shown that the Kelvin mode theory alone provides an incomplete description of the failure of some

materials, but that this weakness can be addressed by the introduction of a set of complementary modes. A revised
theory which combines both Kelvin and complementary modes is developed and illustrated by an applied
example. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Material failure theories are used by engineers to extend the usefulness of a few strength test results to
cover situations not tested. Isotropic failure theories have been available for over a century. Though
none of these theories have been generalized, engineers have succeeded in matching many common
materials with an applicable failure theory. Unlike their isotropic counterparts, anisotropic materials
exhibit directionally dependent mechanical properties and thus the isotropic strength theories are
inapplicable for them. Out of necessity, several empirical criteria have been developed for the prediction
of strength of these new materials (Rowlands, 1985). The principal motivation for these criteria has been
the prediction of strength of laminates of composite materials. Thus almost all of these anisotropic
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criteria are planar and more appropriately applied to two-dimensional problems. Increasingly complex
designs require new strength criteria which are not limited to biaxial stress conditions. Biomechanical
engineers have long been aware of the anisotropic nature of the mechanical properties of organic
materials. Wood and bone are materials which exhibit such a directionally dependent strength and
sti�ness. The stress states that these materials may be subjected to are generally multiaxial rather than
biaxial. Some of the currently available two-dimensional strength criteria are theoretically extendable to
stress states other than biaxial, but present di�culties both in their implementation and limitations in
their results when such an extension is attempted. With few exceptions these criteria are simply various
implementations of empirical correlation curves. The complete determination of these correlations
becomes unusually di�cult and impractical when applied to multiaxial stress. Furthermore, because
these criteria are empirical, their strength predictions are, at best, only interpolative. With one exception,
none of these multiaxial anisotropic strength criteria can be considered genuine theories. The object of
this work is to present a candidate for a multiaxial anisotropic failure theory and to suggest that this
candidate is a genuine theory and a viable alternative to the existing failure criteria for anisotropic
materials.

The principles for the development of eigentensors of linear anisotropic elasticity were ®rst introduced
in 1856 by Lord Kelvin (Thompson, 1856) and rediscovered by Rychlewski (1984) and by Mehrabadi
and Cowin (1990). Extending the concepts associated with isotropic elastic materials, namely that stress
and strain may be decomposed into their dilatational and deviatoric parts, Mehrabadi and Cowin (1990)
state the following general properties for anisotropic eigentensors:

(A) For any elastic symmetry the total stress tensor and the total strain tensor can be additively
decomposed into a sum of six or fewer eigentensors.

(B) For any elastic symmetry each eigenstress is directly proportional to associated eigenstrain.
(C) For any elastic symmetry there is an additive decomposition of the total strain energy into a sum

of six or fewer terms, each term being a scalar-valued product of the stress and strain
eigentensors. These terms represent energy modes which are not interactive.

Property C allowed Biegler and Mehrabadi (1993) to suggest an extension of the von Mises plasticity
theory to anisotropic materials. Their study shows how a strength criterion may be developed for
anisotropic elastoplastic materials by postulating that failure would occur when any of the dilatational
or deviatoric parts of the strain energy would exceed a critical value. Unlike the Tsai±Wu and its
variants which restrict the shape of the failure envelope to that of an ellipsoid, this criterion would
exhibit modes of failure or Kelvin modes. The failure envelope, in this case, would be piecewise smooth
in a multidimensional stress space. Thus polyhedral envelopes of various shapes and aspect ratios are
possible. Each facet of the envelope would represent the locus of failure data by a speci®c Kelvin mode.
The premise this theory is based on is that failure occurs when the energy in any of the Kelvin modes
has reached a critical value. The failure envelope which results from this premise is therefore an explicit
predictor of strength whereas an empirical correlation such as the Tsai±Wu can only o�er an implicit
one.

2. Isotropic materials and decomposition of strain energy

A good summary of the commonly accepted failure criteria for isotropic materials can be found in
Rowlands (1985). With few exceptions, none of these isotropic criteria can be extended to anisotropy. In
this study however, an extension of the von Mises theory will be presented so that a review of this
relatively successful isotropic theory is appropriate.

Though the maximum strain energy is sometimes mentioned in the literature it has been superseded by
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the more accurate maximum distortional energy theory. Huber is usually credited for proposing this
theory (Huber, 1904), though Maxwell had suggested it years earlier in his letter to William Thomson
on 18 December 1856 (Larmor, 1937). This theory uses the fact that the total strain energy exerted on
an isotropic material is the sum of the distortional and dilatational energies. The theory postulates that
the energy associated with the distortion of a material under triaxial stress determines the onset of
yielding, or, in terms of the principal stresses, that,

�s1 ÿ s2�2��s2 ÿ s3�2��s3 ÿ s1�2� 2s2yp �1�

where syp is the uniaxial tensile yield stress.
This failure envelope, in a principal stress space, is a tube of in®nite length with its axis oriented

along the median vector (Fig. 1(b)). The fact that this failure tube is open-ended is often ignored since
the hydrostatic yield for many materials is quite high (Bridgeman, 1923; Nadai, 1950). A complete three-
dimensional failure theory for isotropic materials would include two yield criteria, one for a distortional
mode of failure (maximum von Mises) and one for a dilatational mode such as a maximum hydrostatic
stress. The dilatational mode failure surface would be that of a plane normal to the axis of the von
Mises tube and capping each end of it. As a consequence of this theory a complementary dilatational
criterion is applied for triaxial stress, that is,

1

3
�s1 � s2 � s3� � sH, �2�

where sH represents the hydrostatic compressive or tensile failure stress which may be of di�erent
magnitudes.

The maximum octahedral or von Mises criterion (von Mises, 1928; Hencky, 1924) predicts that the
onset of yielding occurs when the shear stress acting on an octahedral plane has reached a prescribed
limit. It can be demonstrated that this criterion produces the same failure envelope as the maximum
distortional strain energy criterion and is related to the latter by

Fig. 1. Illustration of the three-dimensional distortional energy envelop along with the dilatational ends (b).The maximum shear

stress is sometimes used as an alternative to the von Mises criterion (a).

Y.P. Arramon et al. / International Journal of Solids and Structures 37 (2000) 2915±2935 2917



Udistortional � 3

2

1� v

E
t2oct: �3�

This theory (along with maximum distortional energy) is widely accepted as most suitable in
predicting the failure of isotropic ductile materials under multiaxial stress. However it should be noted
that the formulations of these theories do not allow for distinct compression and tensile failure strengths
and are therefore unsuitable for materials with this characteristic. Other theories have been proposed
which can accommodate this di�erence such as maximum principal stress (Rankine's theory ), or
Coulomb±Mohr's theory (see, e.g. Rowlands, 1985). The popularity of some of these theories is often less
dependent upon their accuracy than on their convenience and conservative predictions. For instance,
because of the succinctness of its formulation, the maximum shear stress criterion is sometimes used as
an alternative to the von Mises (Fig. 1(a)) even though experimental testing suggests that it may
underestimate the strengths in biaxial stress states. Coulomb's theory is also often used to predict the
strengths of aggregates (concrete, soils, sands, etc.), but it also may underestimate the strengths in
biaxial stress e.g. concrete (Kupfer and Gerstle, 1973) sands (Green and Bishop, 1969) clays (Lade and
Musante, 1978). For those materials that do not ®t the general case, empirical curves have been
formulated to accommodate their particularities (PodgoÂ rski, 1983).

3. Failure criteria for anisotropic materials

The failure theories described in the previous section are restricted to elastically isotropic materials.
However, composites such as laminates, ®brous materials such as textiles and woods and biological
materials such as bone, ligaments/tendons and skin all share the characteristic that their strength and
sti�ness are directionally dependent. These generally anisotropic materials display more complex
interaction of multiaxial stresses and strains, making the development of reliable failure theories more
di�cult.

A thorough review of the anisotropic strength theories which have been proposed up to 1985 is
provided by Rowlands (1985). There are several theories that have been used with some success. These
usually assume that the failure envelope in a stress or strain space is a single function. The Tsai±Hill
theory, for instance, assumes the multiaxial failure is bound by a closed quadratic surface: an ellipsoid.
The failure bound in terms of the stresses Ti is described by

FijTiTj � 1, �4�
where i, j � 1, . . . ,6 and Fij are coe�cients determined from mechanical tests (Hill, 1950). The Tsai±Wu
failure criterion is a quadric of the form

FijTiTj � FiTi � 1, �5�
where i, j � 1, . . . ,6, Fi and Fij are the vector and second rank six-dimensional strength tensors, the
coe�cients of which are determined from mechanical tests (Tsai and Wu, 1971). This theory permits
di�erent compressive and tensile strengths. Most of the other Tsai±Wu type theories suggested so far are
variations of the two basic forms, eqns (4) and (5). Some, like Cowin (1979) and Ho�man (1967),
provide predictions of the Fij and Fi coe�cients. Others, like Tennyson et al. (1980) and Wu and
Scheublein (1974), extend the Tsai±Wu criterion to include additional cubic terms.

Although the Tsai±Wu failure criterion and its variants have found considerable acceptance in the
literature, it appears that this is mainly based on their ability to account for biaxial strength and the
dissymmetry in the compressive and tensile strengths. The Tsai±Wu theory has been applied to biaxial
data with tolerable success but not to triaxial data. Close examination of the tensor polynomial (5) and
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the constraints on the stress interaction terms Fij, suggests that the model presented by Tsai and Wu is
more apt at ®tting the biaxial stress failure data than it is in providing a full three-dimensional failure
envelope. Indeed Tsai and Wu (1971) prescribe that the diagonal terms of the strength tensor F be
positive and that the o�-diagonal terms satisfy a stability condition. That is to say that,

Fii > 0, and

����Fii Fij

Fij Fjj

���� > 0 for i, j � 1 . . . 6: �6�

Unfortunately, Tsai and Wu (1971) mistakenly represent these conditions as su�cient to guarantee
that ``...the shape of the surface will not be open-ended like a hyperboloid.'' This is not, in fact, the
case. The requirement that the failure envelope be completely bound is a stronger restriction than that
imposed by eqn (6). Indeed the stability condition (6) does not guarantee that the strength tensor F be
positive de®nite, only that its one rowed and two rowed minors are. Thus, the resulting quadric is
guaranteed to produce closed bounds in three principal biaxial stress spaces, but not necessarily in a
triaxial stress space. The Tsai±Wu criterion of Fig. 2 is an example of such a quadratic surface. A three-
dimensional Tsai±Wu strength criterion for bovine cortical bone is provided by Cowin (1989) as

Fig. 2. Example of a limitation for the model presented by Tsai±Wu for a failure criterion. This surface is a three-dimensional rep-

resentation of the Tsai±Wu criterion (7) for bovine cortical bone provided by Cowin (1989). This plot, in principal stress space, is

unbounded for triaxial compressive stress. Even though the criterion satis®es the restriction speci®ed by Tsai and Wu (1971), it pro-

vides an incomplete description of the three-dimensional failure envelop.
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20:38T1 � 13:33T2 � 2:2T3 � 135T 2
1 � 133:3T 2

2 � 27T 2
3 � 322T 2

6 � 229:3T 2
5 � 200:5T 2

4

ÿ 2�26:9�T1T2 ÿ 2�54:4�T1T3 ÿ 2�39:2�T2T3 � 1,
�7�

where the units of the stress matrix components are GPa. This strength criterion satis®es all the
conditions imposed by the Tsai±Wu criterion but is not an ellipsoid. Though this surface does intercept
the biaxial planes in such a way as to produce elliptical curves, it does not exhibit a bound for triaxial
compression and therefore would be unsuitable to describe any three-dimensional strength. Therefore, in
a principal stress space, the Tsai±Wu criterion, eqn (5), with the restriction, eqn (6), is not a true three-
dimensional criterion, but in fact, a set of three two-dimensional criteria. Each two-dimensional Tsai±
Wu ellipse may be independently ®tted to biaxial data by adjusting the appropriate stress interaction
terms F12, F13 or F23. But in order to guarantee that the strength data are ®tted to an ellipsoid, all three
stress interaction terms would have to be adjusted simultaneously while verifying that the strength
tensor is positive de®nite for each adjustment. This would be a very di�cult task to accomplish and
even if successful, it is unlikely that the resulting failure surface could ®t the biaxial data as well as eqn
(5) with eqn (6).

In 1974, Wu and Scheublein suggested that the principal directions of strength need not be
orthogonal and hence the failure surface is not necessarily an ellipsoid (Wu and Scheublein, 1974). They
thus suggest that third-order terms be included in the tensor polynomial (5) so that the failure envelope
becomes

FiTi � FijTiTj � FijkTiTjTk � 1 �8�
This extension to the theory allows the possibility that a single function describes a closed strength
envelope that is not an ellipsoid such as the one described by eqn (5). However, the determination of the
third order constants of eqn (8) would require several triaxial and combined tensile and shear tests.
These tests are extremely di�cult to accomplish accurately and therefore limit the usefulness of such a
theory.

For the past quarter century the Tsai±Wu criterion has been a popular choice for predicting the
biaxial strength of planar components such as laminates. This popularity is due in part to the
conciseness of its formulation and because it produces simple convex bounds. The tradeo� of such
conciseness however is that extending the Tsai±Wu beyond biaxial stress is not easily accomplished.
Theories such as the Tsai±Wu variants produce failure envelopes that are described by a single
continuous function. In practice, however, many materials exhibit multiple failure mechanisms so that
the failure data may not be smoothly distributed. An appropriate single function would be either too
complex to be determined or too simple to accurately describe the failure data distribution. This has led
some investigators to believe that an appropriate failure envelope for anisotropic materials should not
be produced from a single function, but rather from a set of independent functions. Each of these
functions would describe the failure of a material by a particular mode of failure.

4. Modal failure criteria

In an attempt to correlate a failure mechanism, or a failure mode, with the failure envelope, some
investigators have introduced modal failure theories (Hashin, 1980; Feng, 1991; Biegler and Mehrabadi,
1993). The premise of such theories is that anisotropic materials may fail by multiple independent
mechanisms; therefore, their failure bounds in a stress or strain space are not required to be smooth, but
simply piecewise smooth (Hashin, 1980). The failure envelopes for such materials would therefore be a
composite of patches. Each patch represents the locus of failure by a particular mode. For instance the
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maximum strain theory predicts that failure will occur in a unidirectionally reinforced composite when
either the maximum axial, transverse or shear strain is exceeded. The failure envelope of a laminate
composed of multiple layers of uniaxial plies may be produced by superimposing the individual ply
predictions. Practical application of such a theory, however, is limited to biaxial stress or strain.

In order to correlate a failure mechanism with the failure envelope, Hashin (1980) introduced a
mechanism-based failure criterion for transversely isotropic elastoplastic materials. Hashin (1980)
assumes a criterion which is a quadratic polynomial of the stress invariants. Then by selectively
eliminating some stress interaction terms, Hashin (1980) observes that the remaining stress terms may be
segregated into two groups: those pertinent to a ®ber failure plane and others to a matrix failure plane.
As a result, the failure criteria can be decoupled into two modal criteria: a matrix and a ®ber mode.
Hashin (1980) further argues that since the failure mechanisms are di�erent for tension and
compression, the ®ber and matrix modes must be solved for compression and tension separately. This
produces a total of four surfaces, the constants of which must be determined from experiment. This
represents an appealing approach. Unlike the Tsai±Wu criterion which produces a failure envelope
which is a single smooth surface, this approach results in a much more ¯exible, piecewise continuous
failure envelope.

Unfortunately, the method su�ers from several shortcomings. These shortcomings are discussed in
more detail in Arramon (1997) but are summarized here. Firstly, the arguments used to decouple the
failure criteria into ®ber and matrix modes are only applicable for transversely isotropic materials. It is
di�cult to see how this same procedure can be applied to any other type of material symmetry.
Secondly, the theory apparently produces a ®ber mode which must always reduce to a maximum
principal stress criterion. This prediction implies that a unidirectional ®ber-reinforced lamina subjected
to biaxial stress should fail by maximum principal stress. This is not con®rmed by experiment. Finally,
the boron epoxy example used by Hashin (1980) to illustrate the application of this strength criterion
failed to exhibit a bound in transverse biaxial compression (matrix mode). The resulting strength
envelope for this material is thus an inappropriate multiaxial strength predictor.

In 1991, Feng (1991) used a similar approach to suggest a strain invariant-based failure criterion.
Though the author did not plot the failure surface in a principal stress space, it is clear that this
procedure should, with the same failure data, produce a similar failure surface as in Hashin and
therefore would exhibit the same weaknesses.

The criteria for these modes of failure are selected because their formulation only involves
macroscopic stresses signi®cant to a speci®c microscopic interaction. Other three-dimensional failure
envelopes such as those produced by Biegler and Mehrabadi (1993) and Schreyer and Zuo (1995) are
based on the premise that the symmetry of the failure envelope is related to that of the elasticity tensor.

5. Failure criteria based on Kelvin modes

Using the foundation provided by Mehrabadi and Cowin (1990), Biegler and Mehrabadi (1993, 1995)
present a generalization of the von Mises plasticity theory for anisotropic materials. In a later study,
Schreyer and Zuo (1995) used the same spectral decomposition of the elasticity tensor described by
Biegler and Mehrabadi (1993) to produce yield surfaces based on projection operators. It can be shown
that the projection operators described by Schreyer and Zuo (1995) are the modal tensors described by
Biegler and Mehrabadi (1993, 1995) and again by Martin (1994). Thus both approaches result in the
same yield surfaces. The formulation for these failure criteria is based upon using the spectral
decomposition of the six-dimensional elasticity tensor Cab such that
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Cab �
XK
A�1

LAP
�A�
ab , �9�

where K�KE6� is the number of Kelvin modes i.e. the number of distinct eigenvalues LA and P
�A�
ab are

the modal tensors (Mehrabadi and Cowin, 1990). The number of distinct eigenvalues governs the
number of modal tensors P

�A�
ab for a given symmetry.

The stresses Ta and strains Ea may thus be decomposed into K eigenstresses T �A�a and eigenstrains
E �A�a such that

T �A�a � P
�A�
ab Tb,

E �A�a �
1

LA
T �A�a , �a, b � 1, . . . ,6, A � 1, . . . ,K�: �10�

The strain energy U may therefore also be decomposed into the sum of modal energies U �A� so that

2U �A� � T �A�a E �A�a �
1

LA
T �A�a T �A�a �

1

LA
P
�A�
ab TbP

�A�
ag Tg � 1

LA
P
�A�
ab TaTb, �a � 1, . . . ,6, A � 1, . . . ,K�

�11�
Once these energy modes have been de®ned for a given material, the threshold values are determined

from uniaxial tests. Failure is predicted to occur when the energy stored in any one of these domains
reaches a critical value. Both Biegler and Mehrabadi (1993) and Schreyer and Zuo (1995) point out that
the method produces failure bounds in a manner completely analogous to von Mises plasticity theory.
In fact the isotropic case for this modal failure theory produces two distinct eigenvalues and thus two

Fig. 3. Plot of the modal failure envelope as described by Biegler and Mehrabadi (1993) and Martin (1994). The experimental fail-

ure data for paperboard (Suhling et al., 1985) is superposed. The quadrants of the principal stress plane de®ne regions where

speci®c modes are (or are not) active. Notice the ®t of the corner in the biaxial compression region. The experimental data suggest

that this corner does indeed exist and that is formed by the inersection of two virtually rectilinear bounds.
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modes of failure: a dilatational mode (or a maximum hydrostatic stress failure) and an isochoric shear
mode (a maximum distortional energy or maximum octahedral or von Mises stress).

A comparison of the experimental data for paperboard (Suhling et al., 1985) and the predictions of
the modal failure analysis for tetragonal symmetry was provided by Biegler and Mehrabadi (1993) and
later again by Martin (1994). The procedure employed in these two studies uses a protocol of active
regions to ®t the di�erent compressive and tensile strengths to the modal lines illustrated in Fig. 3. The
premise of this active regions protocol is that the quadrants of principal stress determine whether a
particular mode is active and must be considered or is not and can be ignored. The resulting 2D failure
envelope is intuitively appealing. Though the failure bounds di�er somewhat from the experimental data
in the biaxial tensile domain, they ®t particularly well in the biaxial compressive region. The modes
clearly describe the corner which appears in the biaxial compression experimental data. Not only does
this corner lend credibility to the concept of modes of failure but also to the premise that these
rectilinear bounds are produced from the intercept of the modal failure planes with this biaxial stress
plane. The active regions protocol cannot be extended to three dimensions. A revised three-dimensional
protocol is proposed in the following sections. This new protocol uses the equivalence between surfaces
of modal energies described in this section and surfaces of constant eigenstress magnitude to produce a
new criterion, one which can easily be extended to a multi-dimensional stress space.

6. A new modal failure theory

There are two problems associated with applying the Kelvin mode failure criterion discussed in the
previous section. First, the active regions procedure employed by Biegler and Mehrabadi (1993) and
later again by Martin (1994) to ®t the paperboard failure data of Suhling et al. (1985) proved to be
inapplicable in a three-dimensional stress space. Second, the criterion fails to account for di�erent
compressive and tensile strength for an open failure envelope in the three-dimensional stress space when
biaxial stress data are used. Hence, to overcome these problems, two revisions are made as follows:

(a) The modal energies and the active regions protocol employed by Biegler and Mehrabadi (1993,
1995) are replaced by maximum eigenstress magnitudes evaluated in positive and negative senses.
The resulting maximum eigenstress magnitudes are completely equivalent to the maximum modal
energies. The eigenstress senses provide a means of accommodating di�erent compressive and
tensile strengths in a multi-dimensional principal stress space.

(b) A set of complementary modes are introduced to accommodate any remaining strength data
which cannot be attributed to either a distortional or dilatational mode of failure.

6.1. Eigenstress magnitudes as a representation of modal energies

The intent of the active regions protocol described earlier was to accommodate the di�erent tensile
and compressive strengths of paperboard. An alternative protocol may be formulated by observing that
the surfaces of modal energy are also surfaces of constant eigenstress. Suppose L is distinct (multiplicity
of 1), then eqn can be rewritten as be rewritten as

2LAU
�A� � P

�A�
ab TaTb � T �A�a T �A�a �

ÿ
s�A�

�2
, �a � 1, . . . ,6, A � 1, . . . ,K� �12�

where the scalar s�A� is the magnitude of the eigenstress T �A�a . In the case of isotropy, when A is taken to
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be the distortional mode, this equation reduces to the well known equation that relates the distortional
energy to the square of the second invariant of the deviatoric stress.

To accommodate the dissymmetry in tensile and compressive failure modes, we presume that the
maximum modal energies must be evaluated for positive and negative eigenstresses s�A� separately. Thus
we obtain two criteria for each mode:

2LAU
�A�
T �

�
s�A�T

�2
and 2LAU

�A�
C �

�
s�A�C

�2
: �13�

These conditions de®ne the extreme bounds of the Kelvin mode (A ) in stress space. Ideally, the tensile
and compressive eigenstress magnitudes s�A�T and s�A�C should be determined from a triaxial test. In lieu
of such tests, however, these bounds may be estimated from whatever failure data are available. In Fig.
4 the same biaxial paperboard data employed by Biegler and Mehrabadi (1993) is used to estimate the
maximum eigenstress magnitudes in a triaxial principal stress space. The eigenstress magnitudes are
calculated for each failure datum. The most positive and most negative eigenstress magnitudes s�A�max and
s�A�min are the estimates of s�A�T and s�A�C . With these bounds on the eigenstress magnitudes the strength
envelope is produced from K-Kelvin modes in the form�

s�A� ÿ s�A�T

��
s�A� ÿ s�A�C

�
� 0 �14�

where s�A�T � s�A�max and s�A�C � s�A�min, A � 1, . . . ,K and K is the number of distinct eigenvalues. Fig. 4 shows

Fig. 4. Illustration of how the compressive and tensile modal bounds are determined. The failure data plotted here are the same

paperboard biaxial data as in Fig. 3. The two modal energy bounds P
�A�
ab TaTb��s�A�min�2 and P

�A�
ab TaTb��s�A�max�2 de®ne maximum and

minimum allowable eigenstress magnitudes. Note that, for clarity, although the bounds describes planes in a three-dimensional

stress space, only the (T2, T3) intercept is shown here.
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one such Kelvin mode superimposed upon the paperboard strength data which produced it. For the
paperboard example of Biegler and Mehrabadi (1993) and of Martin (1994), this Kelvin mode criterion
reduces to a set of three failure criteria given by

Kelvin mode 1ÿ
s�1� ÿ 47:1

�ÿ
s�1� � 16:8

�
� 0, where s�1� � 0:382�T1 � T2� � 0:841T3,

Kelvin mode 2ÿ
s�2� ÿ 18:1

�ÿ
s�2� � 30:3

�
� 0, where s�2� � 0:595�T1 � T2� ÿ 0:541T3,

Kelvin mode 3ÿ
s�3� ÿ 21:6

�ÿ
s�3� � 9:19

�
� 0, where s�3� � 1���

2
p �T1 ÿ T2 �: �15�

We therefore obtain two planes for each of the three modes in eqn (15). The resulting failure
envelope, illustrated in illustrated in Fig. 5, is a brick shaped volume. The normal to each face of the
brick is a vector in the direction of the eigenstresses. The intercept of this volume with the (T1, T3)
principal stress plane is entirely consistent with the two-dimensional predictions of Biegler and
Mehrabadi (1993) and Martin (1994) illustrated in Fig. 3. The advantage that this approach presents is
that it dispenses with the need for the active regions protocol previously mentioned. As in these studies,
only the uniaxial test data were considered to produce Fig. 5. Consequently, some of the failure surfaces
intersect on the axes (mode 1 and mode 2 on both the T1 and T3 axes of Fig. 5). It is possible but not

Fig. 5. A 3D plot of the Kelvin mode failure bounds for paperboard. The (T1, T3) planar intercept of this failure envelope co-

incides with the plots produced by Biegler and Mehrabadi (1993) and Martin (1994). Note that this plot was produced with the

assumption that only the uniaxial data are available. For this reason modes 1 and 2 coincide on the T3 axis and modes 2 and 3 on

the T1 axis. This would not necessarily be the case if the full set of biaxial were considered.
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likely that any one, experimentally determined, strength datum represents the simultaneous failure by
two or more modes. This mode coincidence is an ambiguity since the failure datum in question cannot
be attributed to a speci®c Kelvin mode. A similar situation arises in plasticity theories in which the yield
surface is piecewise. In such theories, the plastic strain direction is somewhere between the two normals
to the yield surfaces at the vertex (if the ¯ow rule is associated).

6.2. Complementary failure modes

Ideally, the tensile and compressive eigenstresses should be determined directly from triaxial tests.
However triaxial tests are extremely di�cult to reproduce accurately so that such data are almost never
available. Biaxial data, such as the paperboard data of Suhling et al. (1985), are more common and may
be used to estimate the bounds on the eigenstresses. Whenever possible, the biaxial data from multiple
planes should be used. In this case, the biaxial data provided by Suhling et al. (1985) are for one plane
only (T1, T3). However, for the tetragonal symmetry of paperboard it may reasonably be assumed that
the strength in the (T2, T3) plane is the same as in the (T1, T3) plane, so that the intercept of the Kelvin
modes with these two stress planes should produce the same predictions. Yet there is no way to

Fig. 6. Illustration of the problem with the (T1, T2) Kelvin mode predictions for paperboard strengths. (a) If the tensile/compressive

strengths are considered equal, then discontinuities across the axes appear unavoidable. (b) If instead the surfaces are assumed con-

tinuous then we have the counterintuitive situation with T1(comp.) = T2(tensile) and T1(tensile) = T2(comp.).

Fig. 7. Illustration of the von Mises theory's inability to account for the tensile strength of concrete. The empirical curve was pro-

duced from experiment (Kupfer and Gerstle, 1973). The addition of a complementary maximum principal stress mode produced a

failure envelope consistent with the experimental data. The proposed combined criterion ®ts `better' than the Tsai±Wu for this

case.
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accomplish this without introducing a gap in the failure envelope. A plot of the (T1, T2) Kelvin modes
(Fig. 6) exhibits this ¯aw in the Kelvin mode criterion. If the tensile/compressive strengths are
considered equal, then discontinuities across the axes appear unavoidable (Fig. 6(a)). If instead, the
surfaces are assumed continuous then the counterintuitive situation arises with T1(comp.) = T2(tensile)
and T1(tensile) = T2(comp.).

This problem appears unavoidable and is not unique to this material. Indeed, a similar inconsistency
develops when this criterion is applied to elastically isotropic materials like concrete. For isotropy, this
modal failure theory reduces the number of modes to two: a distortional (von Mises) and a dilatational
(hydrostatic stress) mode. Though the von Mises agrees well with the biaxial compressive data of
Kupfer and Gerstle (1973), neither the von Mises nor the maximum hydrostatic stress criteria can
account for the failure in the tensile regions (Fig. 7). Clearly, concrete exhibits an additional mode of
failure which is unrelated to the Kelvin modes. These aspects of the modal failure envelope of concrete
and paperboard suggest that this criterion provides an incomplete description of the failure.

To accommodate the tensile strength of concrete, it is proposed to revise the Kelvin mode failure
theory with the introduction of a set of complementary modes. A set of maximum principal stress
modes (or (P ) modes) has intuitive appeal and apparently addresses the weaknesses described above.
These complementary modes would be determined in a manner analogous to the Kelvin modes, that is
to say we de®ne the (P ) failure modes such that,�

s�P� ÿ s�P�T

��
s�P� ÿ s�P�C

�
� 0, �16�

where s�I� � T1, s�II� � T2 and s�III� � T3. It is important to note that this criterion is not equivalent to a
maximum uniaxial stress criterion. Instead, the bounds of s�P �T and s�P �C are evaluated from the
multiaxial failure data so that s�P �T � s�P �max and s�P �C � s�P �min.

When this complementary criterion is applied to the concrete failure data Fig. 7, it succeeds in
accounting for the tensile strength of concrete. Indeed, an appropriate Tsai±Wu criterion could never
account for the discontinuities apparent in the experimental data of Kupfer and Gerstle (1973).

6.3. Complementary failure modes

The revised modal theory may therefore be formally described by�
s�A� ÿ s�A�T

��
s�A� ÿ s�A�C

�
� 0, and

�
s�P� ÿ s�P�T

��
s�P� ÿ s�P�C

�
� 0, �17�

where s�A� is the magnitude of the eigenstress associated with the eigenvalue LA of the material's
elasticity tensor; s�A�T � s�A�max is the largest values of s�A� that can be determined from the available failure
data set; s�A�C � s�A�min is the smallest value of s�A� that can be determined from the available failure data
set; A � 1, . . . ,K where K is the number of distinct eigenvalues of the material's elasticity tensor; s�P � is
the magnitude of the principal stress (complementary mode); s�P �T � s�P �max is the largest value of s�P �

that can be determined from the available failure data set; s�P �C � s�P �min is the smallest value of s�P � that
can be determined from the available failure data set.

7. Application of modal failure to paperboard

To illustrate the application of this theory, the paperboard data of Suhling et al. (1985) used by
Biegler and Mehrabadi (1993) is reexamined. In this case, however, the entire set of biaxial stress data is
employed to produce the mode bounds and the resulting envelope reproduced. Though this example
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lacks biaxial data in the transverse plane, the resulting envelope is almost completely de®ned and should
provide su�cient illustration for this method.

There are two sets of data which are critical to the determination of the modal failure envelope for
any material: the eigenvectors of the elasticity tensor and the bounds or critical values of the Kelvin and
complementary modes. The Kelvin modes are planes of constant eigenstress. The orientations of these
planes are dependant upon the eigenvectors of the material's elasticity tensor. It is critical therefore that
these eigenvectors be determined as a ®rst step in the analysis. The elastic constants for cardboard, as
given by Martin (1994), are

E1 � 3510 MPa, E2 � 3510 MPa, E3 � 6930 MPa,
v13 � 0:15, v23 � 0:15, v12 � 0:3,
G23 � 1700 MPa, G13 � 1700 MPa, G12 � 1500 MPa,

which are in reasonable agreement with those listed in Suhling et al. (1989). The paperboard elasticity
tensor is deduced in the usual manner from the elasticity data listed above and is given by

C �

266666666664

4220 1520 1700 0 0 0

1520 4220 1700 0 0 0

1700 1700 7940 0 0 0

0 0 0 1700 0 0

0 0 0 0 1700 0

0 0 0 0 0 1500

377777777775
� MPa: �18�

Cowin and Mehrabadi (1995b) provided a catalog of anisotropic symmetries along with the restriction
on the elastic components. An examination of this elasticity tensor reveals that the material exhibits a
tetragonal symmetry. The eigenvalues for this elasticity tensor are given as

L �

2666666666664

9480

4200

2700

1700

1700

1500

3777777777775
� MPa, �19�

and the ®rst three eigenvectors are

N1 �

2666666666664

0:382435

0:382435

0:841123

0

0

0

3777777777775
, N2 �

2666666666664

ÿ0:594763
ÿ0:594763
0:540845

0

0

0

3777777777775
, N3 �

2666666666664

ÿ0:7071068
0:7071068

0

0

0

0

3777777777775
: �20�
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The last three eigenvectors are

N4 �

266666666664

0

0

0

cos �y�
sin �y�

0

377777777775
, N5 �

266666666664

0

0

0

ÿsin �y�
cos �y�

0

377777777775
, N6 �

266666666664

0

0

0

0

0

1

377777777775
�21�

where y is an arbitrary angle in the eigensubspace de®ned by N5. The ®rst three modal products are
then given by eqn (12) as

P
�1�
abTaTb � �0:382�T1 � T2 � � 0:841T3�2 � �s�1��2,

P
�2�
abTaTb � �0:595�T1 � T2 � ÿ 0:541T3�2 � �s�2��2,

P
�3�
abTaTb � �0:707 � �T1 ÿ T2��2 � �s�3��2: �22�

The last two modal products reduce to functions of the shears alone

Fig. 8. Illustration of the revised three-dimensional modal failure envelope (a). The Kelvin and complementary modes are superim-

posed. The intersection of this mode sets is the proposed failure envelope. (b) The trace of the modal failure envelope in the (T2,

T3) plane is consistent with the results proposed in Biegler and Mehrabadi (1993). Though not illustrated here the trace in (T1, T3)

is identical to that in the (T2, T3) plane. (c) The trace of the modal failure envelope in the (T1, T2) plane. Transverse biaxial data

are not available, therefore the (T1, T2) failure envelope may still display the variation shown in (c).
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P
�4�
abTaTb � �T4�2��T5 �2�

ÿ
s�4�

�2
,

P
�5�
abTaTb � �T6�2�

ÿ
s�6�

�2
: �23�

These last two modes do not involve T1, T2, or T3 and therefore have no meaningful representation in
this principal stress space.

In their paperboard example Biegler and Mehrabadi (1993) only considered the uniaxial strengths. In
this case however, the entire biaxial strength data are included in the evaluation of the modal failure
envelope. The data were interpreted from the biaxial strength plot in Martin (1994) for the same
paperboard data studied by Suhling et al. (1985). This strength data, along with the corresponding
Kelvin mode magnitudes, are tabulated in Arramon (1. The maximum and minimum Kelvin mode
magnitudes and principal stresses are identi®ed. Then, with eqn (14), the three Kelvin modes become
Kelvin mode 1ÿ

s�1� ÿ 47:1
�ÿ
s�1� � 16:8

�
� 0, where s�1� � �0:382�T1 � T2 � � 0:841T3 �: �24�

Kelvin mode 2ÿ
s�2� ÿ 18:1

�ÿ
s�2� � 30:3

�
� 0, where s�2� � 0:595�T1 � T2� ÿ 0:541T3: �25�

Kelvin mode 3ÿ
s�3� ÿ 21:6

�ÿ
s�3� � 9:19

�
� 0, where s�3� � 0:707�T1 ÿ T2�: �26�

These Kelvin modes are equations of parallel planes in principal stress space (T1, T2, T3) and, along
with the maximum principal stress planes, represent the failure bounds in this space. The resulting three-
dimensional modal failure envelope is illustrated in Fig. 8(a). The revised paperboard failure envelope
displays an intuitively correct strength prediction in the (T2, T3) biaxial stress plane (Fig. 8(b)). Though
not illustrated, the strength prediction in (T1, T3) is identical to that in the (T2, T3) plane and is
therefore consistent with intuition. The complete three-dimensional failure envelope is the intersection of
the Kelvin and complementary mode failure volumes (Fig. 8(a)). There still remains an ambiguity in the

Fig. 9. Comparison of the biaxial modal failure predictions with an appropriate Tsai±Wu envelope (Suhling et al., 1985). The

Tsai±Wu coe�cients are F1 � ÿ4:4Eÿ 2 Mpaÿ1, F11 � 2:5Eÿ 3 Mpaÿ2, F3 � ÿ3:2E ÿ 2 Mpaÿ1, F33 � 8:9E ÿ 4 Mpaÿ2 and the

stress interaction term is determined using the relationship developed by Cowin (1979) that is: F13 � ÿ3:3Eÿ 4 Mpaÿ2.

Y.P. Arramon et al. / International Journal of Solids and Structures 37 (2000) 2915±29352930



(T1, T2) stress plane (Fig. 8(c)). The mode coincidence apparent in Fig. 8(c) is due to the lack of biaxial
data for this stress plane.

A comparison of the biaxial modal failure predictions with an appropriate Tsai±Wu envelope (Suhling
et al., 1985) is illustrated in Fig. 9. The Tsai±Wu coe�cients are those suggested by Suhling et al.
(1985): F1 � ÿ4:4Eÿ 2 MPaÿ1, F11 � 2:5Eÿ 3 MPaÿ2, F3 � ÿ3:2Eÿ 2 MPaÿ1, F33 � 8:9Eÿ 4 MPaÿ2

and F13 � ÿ3:3Eÿ 4 MPaÿ2. The stress interaction term suggested by Suhling et al. (1985) was
originally determined using the relationship developed by Cowin (1979). Both biaxial strength
predictions are superiimposed over a plot of the biaxial strength data.

In a later study, Gunderson et al. (1985) examined a subset of this paperboard data and compared the
strength predictions of three `multiple criteria' failure models. The model of which these authors appear
to have obtained the best agreement is one that includes four criteria: a normal compressive strain limit
and compressive stress limit, a normal tensile stress limit and what the authors have called a `combined
probability' criterion which allows them to account for the stress interactions in biaxial compressive and
tensile stress states. We will consider the work of Gunderson et al. (1985) further in Section 8.

8. Discussion

There are two sets of data which are critical to the determination of the modal failure envelope for
any material: the eigenvectors of the elasticity tensor and the bounds or critical values of the Kelvin and
complementary modes. The Kelvin modes are planes of constant eigenstress magnitude. The orientations
of these planes are dependent upon the eigenvectors of the material's elasticity tensor. It is critical
therefore that these eigenvectors be determined as a ®rst step in the analysis. In most cases, the tensor
may be measured by either mechanical testing or by ultrasound. Occasionally the method of
measurement of the elastic constants is dependent upon the physical limitations of the sample that can
be excised from the material. For instance, though highly porous materials such as trabecular bone may
display macroscopically homogeneous mechanical behavior, they are in fact inhomogeneous. In such
cases a judiciously chosen sample size will provide mechanical measurements that are representative of
the material. A sample size of ®ve trabecular lengths is believed to be appropriate for trabecular bone
(Harrigan et al., 1988). If the material microstructure can be reconstructed as a computer model then
either a ®nite element model or a reconstruction by rapid polymerization may be used to determine an
average elastic behavior and the elasticity tensor deduced from it. Some materials exhibit a visual
indication of the principal directions of their material properties, such as the grain of wood. For such a
material, a specimen may be shaped in such a way as to accommodate testing in these directions. If the
material exhibits no such visual indication then the elasticity tensor may be determined for multiple
specimens and the average of the elastic properties may be deduced from the entire set (Franc° ois, 1995;
Cowin and Yang, 1997). Regardless of what method is used, the elasticity tensor is central to the theory
because it indicates the symmetry of the material and the orientation of the Kelvin modes.

Once the orientations of the modal failure surface have been established, their position in principal
stress space can be determined. For the isotropic case this would be equivalent to establishing the
maximum allowable von Mises stress from the available data. However, unlike the isotropic case, an
anisotropic material would require a minimum of six pairs of failure data to establish the maximum
Kelvin modes. Fortunately, in a principal stress space this number can be reduced to three pairs of
failure data since, in many cases, only three modal surfaces can be represented in this stress space. In
addition to the Kelvin modes, at least three pairs of failure data are required to establish the maximum
complementary modes. This brings the total number of required failure data to six pairs, or twelve test
points. Ideally, a succession of three pairs of uniaxial tests followed by three pairs of multiaxial (triaxial)
strength tests performed in the direction normal to the Kelvin modes should be performed. These data
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points would provide a ®rst conservative estimate of the Kelvin mode failure bounds. Following these
six triaxial tests, six additional mechanical tests could be performed in the direction least likely to
intercept a Kelvin mode failure surface (the directions of which would be apparent from the initial
failure envelope). Each consecutive set of data would produce successively less conservative failure
envelopes. The failure envelope would be presumed to be completely de®ned when a su�cient number
of failure data points could be uniquely attributed to each failure mode.

Unfortunately, a reliable procedure for triaxial testing of anisotropic materials is by no means
established. Multiaxial tests are di�cult to reproduce accurately even for isotropic materials so it is
unlikely that this type of data would be available for anisotropic materials in the near future. It is more
reasonable to expect that biaxial data may be available. It is possible to determine the mode bounds
from a set of biaxial strength data in mutually orthogonal stress planes. With such data, the position of
the failure modes is simply the outermost envelope, one which includes all of the strength data. If the
theory is applicable, the data should closely match the envelope created by the Kelvin and
complementary modes. To illustrate this method the paperboard data of Suhling et al. (1985) used by
Biegler and Mehrabadi (1993) was re-examined (Fig. 3). In this case, however, the entire set of biaxial
stress data is employed to produce the mode bounds and the resulting three-dimensional failure
envelope reproduced (Fig. 8(a)). The ®t of this modi®ed modal theory to the (T2±T3) biaxial strength
experimental data is unusually good (Fig. 8(b)). The biaxial compressive strength is consistent with the
intersection of a Kelvin mode 1 and a complementary mode. The combined T2 (tensile) and T3

(compressive) strength data also appear to be consistent with the intersection of a Kelvin mode 2 and a
complementary mode. The inclusion of the biaxial data in the evaluation of the modal envelope appears
to have been bene®cial. The resulting ®t of the modal theory to the biaxial T2 (tensile) and T3

(compressive) strength data (Fig. 8(b)) is even better than that obtained by Biegler and Mehrabadi
(1993) (Fig. 3). Although not plotted in this study, the (T1±T3) trace is identical to that of the (T3±T2)
biaxial stress plane. The lack of biaxial transverse strength is apparent in the (T1±T2) biaxial trace (Fig.
8(c)). If such data were available, the trace in this plane may have a somewhat di�erent appearance.

There are some immediately apparent circumstances that preclude the applicability of this failure
theory. The ®rst would be a concavity in the failure envelope. Such features are sometimes apparent
with materials that exhibit buckling in biaxial compression (Rowlands, 1985). The modal theory
presented in this study produces a convex envelope for all symmetries including isotropy (von Mises
criteria). In fact, all of the anisotropic failure criteria suggested so far produce convex envelopes and
would obviously not accommodate such a feature. Clearly, specially tailored empirical functions would
have to be developed to describe the strength behavior of these materials.

The close connection between the elasticity and the Kelvin mode strength predictions requires not
only that the material be linearly elastic within the Kelvin and complementary failure bounds but that
the anisotropy remain constant within it as well. This is not always the case, particularly for aggregates
such as concrete, rock and soils.

This modal failure theory is not the ®rst attempt to correlate the failure stress of an anisotropic
material with a failure mechanism but the ®rst to extend von Mises plasticity theory to anisotropic
materials. The results presented in this study are encouraging but not conclusive. The paperboard
biaxial modal failure envelope is in excellent agreement with experiment and appears to account for the
discontinuities in the strength distribution reported by Suhling et al. (1985). However, no association of
a failure mechanism with these strength data was reported. So it is impossible to tell if the failure data
associated with a particular Kelvin or complementary mode can also be attributed to a particular failure
mechanism. It is tempting to correlate the strength predictions of this modal failure theory with that of
Gunderson et al. (1985). Both approaches ®t the biaxial data reasonable well where data are available.
Where there are no available data (e.g. for T1 slightly compressive and T3 nearly tensile nearly at the
maximum uniaxial limit) both failure envelopes exhibit roughly similar slopes. However, it is
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inappropriate to use one strength predictor to validate another. Since Gunderson et al. (1985) do not
correlate the failure modes in their study with direct observation of mechanism of failure, any similarity
between the approach used in their study and this one validates neither.

The most signi®cant remaining shortcoming of this modal failure theory is the likely requirement of
an undetermined number of multiaxial tests to completely de®ne the failure envelope. Indeed, because
the Kelvin and complementary modes are not orthogonal to each other in stress space, it is likely that
more than the minimum twelve mechanical tests would be required. An appropriate sequence of tests
might be a set of three (positive and negative) pairs of uniaxial tests in the three principal directions of
the material followed by three pairs of triaxial tests in the direction of the modal stresses. The three
modal and three principal stress magnitudes would then be tabulated and the maximum and minimum
values identi®ed for each column. If only one mode (Kelvin or complementary) has reached an
extremum at a particular strength datum, then that mode is presumed to have been uniquely determined
and may safely be ignored in any subsequent iteration. If on other hand, a strength datum can be
attributed to the extremum of two or more modes, then this point represents an ambiguity which must
be resolved by additional mechanical tests. Fortunately, because all successive failure envelopes are
necessarily convex, they also represent progressively less conservative failure predictions.

As empirical curves are not obtained from theories, they ®t the experimental data as closely as
possible regardless of how the data were obtained or what measure they are meant to represent. In this
sense, criteria such as the Tsai±Wu and Hill criterion represent implicit predictors of strength. These
criteria are based on the belief that, if two similar stress states represent two failure points, then some
in-between stress state must also be a similar failure point. When the Tsai±Wu criterion is combined
with a predictor of its coe�cients, the resulting criterion is more than an empirical relation. For
instance, the paperboard Tsai±Wu criterion suggested by Suhling et al. (1985) for paperboard is such an
example because the stress interaction terms Fij are functions of the uniaxial and shear strengths (Cowin,
1979). The biaxial strength disitribution is thus predicted from uniaxial and shear strength. On the other
hand, the modal energy failure criterion of Biegler and Mehrabadi (1993) is a genuine theory. This
theory postulates that an anisotropic material fails when the energy in any one of its six independent
modes has reached some critical value. The theory is entirely analogous to the theory of failure by
maximum distortional or dilatational energy for isotropic materials. The superposition of the
complementary modes is analogous to that of a maximum principal stress criterion over the distortional
and dilatational energy criterion. The necessity of this additional set of failure modes became apparent
after the observation that the modal energy criterion alone could not account for the di�erent
compressive and tensile strengths of paperboard.

The implied correlation of the principal directions of the strength envelope with those of the elasticity
tensor makes this theory unique. Organic materials such as wood and bone have demonstrated
connections between their elasticity and strength, so that a failure theory such as this one may be
particularly well suited for them.

9. Conclusion

The failure criterion of Biegler and Mehrabadi (1993) was introduced and a modi®ed procedure for
the determination of the modal failure envelope was proposed. This procedure involves the
determination of the maximum and minimum modal stress magnitudes (Kelvin modes) rather than the
modal energies. It was further shown that the Kelvin mode theory provides an incomplete description of
the failure of some materials, but that this weakness can be addressed by the introduction of a set of
complementary modes. This combined modal theory was applied to the tetragonal paperboard example
used by Biegler and Mehrabadi (1993). The resulting failure envelope for this example was shown to
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produce intuitively correct failure predictions. The Kelvin and complementary principal stress modes
appear to better account for the paperboard strength distribution than the best ®tting Tsai±Wu.

The value of this work lies in the nature of its strength predictions. The Kelvin mode criterion is
based on the premise that an anisotropic material will fail when the energy in any one of up to six
independent modes has reached a critical value (Biegler and Mehrabadi, 1993). Because it is based on
this premise the Kelvin mode criterion is an explicit predictor of the strength rather than an implicit one
such as the Tsai±Wu, Hill and other criteria. The Kelvin mode criterion is therefore a genuine theory of
the multiaxial strength of any anisotropic elastic material and appears to be a viable and practical
alternative to the Tsai±Wu and other current anisotropic strength criteria.
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